skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Chuqing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract B-trees are widely recognized as one of the most important index structures in database systems, providing efficient query processing capabilities. Over the past few decades, many techniques have been developed to enhance the efficiency of B-trees from various perspectives. Among them,B-tree compressionis an important technique introduced as early as the 1970s to improve both space efficiency and query performance. Since then, several B-tree compression techniques have been developed. However, to our surprise, we have found that these B-tree compression techniques werenevercompared against each other in prior works. Consequently, many important questions remain unanswered, such as whether B-tree compression is truly effective or not. If it is effective, under what scenarios and which B-tree compression methods should be employed? In this paper, we conduct an experimental evaluation of seven widely used B-tree compression techniques using both synthetic and real datasets. Based on our evaluation, we present lessons and insights regarding the use of B-tree compression that can be leveraged to guide system design decisions in modern databases. 
    more » « less